banner
horizlines
collaborators
research
publications
animations
software

Computational Fluid Dynamics:

Invited and Feature Articles

  1. Schneider, K. and Vasilyev, O.V., Wavelet Methods in Computational Fluid Dynamics, Ann. Rev. Fluid Mech., 42, pp. 473-503, 2010.

Articles in Refereed Journals

  1. Morinishi, Y., Lund, T.S., Vasilyev, O.V., and Moin, P., Fully Conservative Higher Order Finite Difference Schemes for Incompressible FlowJ. Comp. Phys., 143, pp. 90-124, 1998.
  2. Vasilyev, O.V., High Order Finite Difference Schemes on Non-Uniform Meshes with Good Conservation PropertiesJ. Comp. Phys., 157, pp. 746-761, 2000.
  3. Morinishi, Y., Vasilyev, O.V., and Ogi, T., Fully Conservative Finite Difference Scheme in Cylindrical Coordinates for Incompressible Flow Simulations. Journal of Computational Physics, 197(2), pp. 686-710, 2004.
  4. Liu, Q. and Vasilyev, O.V., Brinkman Penalization Method for Compressible Flows in Complex Geometries,Journal of Computational Physics, 227(2), pp. 946–966, 2007.
  5. Liu, Q. and Vasilyev, O.V., Nonreflecting Boundary Conditions Based on Nonlinear Multidimensional Characteristics, Int. J. Num. Meth. Fluids, 62(1), pp. 24–55, 2010.
  6. Reckinger, S.M., Vasilyev, O.V., and Fox-Kemper, B., Adaptive Volume Penalization for Ocean Modeling, Ocean Dynamics, 62(8), pp. 1201-1215, 2012.
  7. Geers, T.L., Lagumbay, R.S., and Vasilyev, O.V., Acoustic-wave Effects in Violent Bubble Collapse, Journal of Applied Physics, 112(5), 054910, 2012.
  8. Reckinger, S.J., Livescu, D., and Vasilyev, O.V., Comprehensive Numerical Methodology for Direct Numerical Simulations of Compressible Rayleigh-Taylor Instability, Journal of Computational Physics, 313, pp. 181-208, 2016.
  9. Shervani-Tabar, N. and Vasilyev, O.V., Stabilized Conservative Level Set Method, Journal of Computational Physics, 375, pp. 1033-1044, 2018.

Conference and Symposium Papers

  1. Vasilyev, O.V., and Paolucci, S., Thermoacoustic Wave Propagation Modeling Using a Dynamically Adaptive Wavelet Collocation Method. In Proceedings of the ASME Heat Transfer Division, HTD-335, Volume 4, pp. 47-54, Edited by D.W. Pepper et al., ASME, 1996.
  2. Lagumbay, R.S., Vasilyev, O.V., Haselbacher, A., and Wang, J., Numerical Simulation of a High Pressure Supersonic Multiphase Jet Flow Through a Gaseous Media, In Proceedings of the 16th International Mechanical Engineering Congress and Exposition, ASME, vol. 3, IMECE2004-61008, 2004.
  3. Lagumbay, R.S., Vasilyev, O.V., Haselbacher, A., and Wang, J., Numerical Simulation of a Supersonic Three-Phase Cavitating Jet Flow Through a Gaseous Medium in Injection Nozzle, In Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition, ASME, IMECE2005-82948, 2005.
  4. Kassoy, D., Regele, J. and Vasilyev, O.V., Detonation Initiation on the Microsecond Time Scale: Comparative One and Two Dimensional DDT Results Obtained from Adaptive Wavelet-Collocation Numerical Methods, AIAA Paper 2007-986, 2007.
  5. Regele, J.D., Kassoy, D., and Vasilyev, O.V., Numerical Modeling of Acoustic Timescale Detonation Initiation, AIAA Paper 2008-1037, 2008.
  6. Regele, J.D., Kassoy, D., Vezolainen, A., and Vasilyev, O.V., Purely gasdynamic multidimensional indirect detonation initiation using localized acoustic timescale power deposition, AIAA-2013-1172, 2013.
  7. Regueiro, R., Pak, R., McCartney, J., Sture, S., Yan, B., Duan, Z., Svoboda, J., Mun, W., Vasilyev, O.V., Kasimov, N., Brown-Dymkoski, E., Hansen, C., Li, S., Ren, B., Alshibli, K., Druckrey, A., Lu, H., Luo, H., Brannon, R., Bonifasi-Lista, C., Yarahmadi, A., Ghodrati, E., Colovos, J., ONR MURI Project on Soil Blast Modeling and Simulation, In Dynamic Behavior of Materials, Volume 1, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 341-353, 2014.
  8. Brown-Dymkoski, E., Kasimov, N., and Vasilyev, O.V, Characteristic-Based Volume Penalization Method for Arbitrary Mach Flows Around Solid Obstacles, IIn Direct and Large-Eddy Simulation IX, Proceedings of the Ninth International ERCOFTAC Workshop on Direct and Large-Eddy Simulations, pp. 109-115, Edts. J. Frohlich, H. Kuerten, B.J. Geurts, and V. Armenio, Springer, 2015.
  9. De Stefano, G., Brown-Dymkoski, E., and Vasilyev, O.V, Adaptive direct numerical simulation with spatially-anisotropic wavelet-based refinement, In Direct and Large-Eddy Simulation XI. ERCOFTAC Series, pp. 3-8, Edts. Salvetti, M.V., Armenio, V., Frohlich, J., Geurts, B.J., Kuerten, H., Springer, doi.org/10.1007/978-3-030-04915-7, 2019.
  10. De Stefano, G. and Vasilyev, O.V., Towards wavelet-based intelligent simulation of wall-bounded turbulent compressible flows, In Direct and Large-Eddy Simulation XII, DLES 2019. ERCOFTAC Series, vol. 27, pp. 285-290, Edts. Garcia-Villalba M., Kuerten H., Salvetti M., Springer, Cham, doi.org/10.1007/978-3-030-42822-8_37, 2020.

Non-Refereed Articles

  1. Vasilyev, O.V. and Bushe, W.K., On the use of a dynamically adaptive wavelet collocation algorithm in  DNS of non-premixed turbulent combustion. In Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ., pp. 65-81, 1998.
  2. Vasilyev, O.V., On the construction of high order finite difference schemes on non-uniform meshes with good conservation properties. In Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ., pp. 311-324, 1998.
AWTlogo
 
Dr. Oleg V. Vasilyev, Founder and CEO
Adaptive Wavelet Technologies LLC.
2943 Casalon Circle
Superior, CO 80027, USA
 
Email: O.V.Vasilyev@AdaptiveWaveletTechnologies.com
URL: AdaptiveWaveletTechnologies.com
 

Last Updated: June 27, 2020